We can calculate the flow of water / water discharge flow using sensor flow sensor. This tool MUST be mounted vertically or holes above and below, to him it is written in the sensor where they lead, though not very accurate but still can be used to calculate water flow, these sensors provide output in the form of pulses, we can count the arduino.
Arduino Code
byte statusLed = 13; byte sensorInterrupt = 0; // 0 = digital pin 2 sensorPin byte = 2; // The hall-effect flow sensor outputs approximately 4.5 pulses per second per // litre/minute of flow. float calibrationFactor = 4.5; volatile byte pulseCount; float flowRate; unsigned int flowMilliLitres; unsigned long totalMilliLitres; unsigned long oldTime; void setup() { // Initialize a serial connection for reporting values to the host Serial.begin(38400); // Set up the status LED line as an output pinMode(statusLed, OUTPUT); digitalWrite(statusLed, HIGH); // We have an active-low LED attached pinMode(sensorPin, INPUT); digitalWrite(sensorPin, HIGH); pulseCount = 0; flowRate = 0.0; flowMilliLitres = 0; totalMilliLitres = 0; oldTime = 0; // The Hall-effect sensor is connected to pin 2 which uses interrupt 0. // Configured to trigger on a FALLING state change (transition from HIGH // state to LOW state) attachInterrupt(sensorInterrupt, pulseCounter, FALLING); } /** * Main program loop */ void loop() { if((millis() - oldTime) > 1000) // Only process counters once per second { // Disable the interrupt while calculating flow rate and sending the value to // the host detachInterrupt(sensorInterrupt); // Because this loop may not complete in exactly 1 second intervals we calculate // the number of milliseconds that have passed since the last execution and use // that to scale the output. We also apply the calibrationFactor to scale the output // based on the number of pulses per second per units of measure (litres/minute in // this case) coming from the sensor. flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor; // Note the time this processing pass was executed. Note that because we've // disabled interrupts the millis() function won't actually be incrementing right // at this point, but it will still return the value it was set to just before // interrupts went away. oldTime = millis(); // Divide the flow rate in litres/minute by 60 to determine how many litres have // passed through the sensor in this 1 second interval, then multiply by 1000 to // convert to milliliters. flowMilliLitres = (flowRate / 60) * 1000; // Add the millilitres passed in this second to the cumulative total totalMilliLitres + = flowMilliLitres; unsigned int frac; // Print the flow rate for this second in litres / minute Serial.print("Flow rate: "); Serial.print(int(flowRate)); // Print the integer part of the variable Serial.print("."); // Print the decimal point // Determine the fractional part. The 10 multiplier gives us 1 decimal place. frac = (flowRate - int(flowRate)) * 10; Serial.print(frac, DEC) ; // Print the fractional part of the variable Serial.print("L/min"); // Print the number of litres flowed in this second Serial.print(" Current Liquid Flowing: "); // Output separator Serial.print(flowMilliLitres); Serial.print("mL/Sec"); // Print the cumulative total of litres flowed since starting Serial.print(" Output Liquid Quantity: "); // Output separator Serial.print(totalMilliLitres); Serial.println("mL"); // Reset the pulse counter so we can start incrementing again pulseCount = 0; // Enable the interrupt again now that we've finished sending output attachInterrupt(sensorInterrupt, pulseCounter, FALLING); } } /* Insterrupt Service Routine */ void pulseCounter() { // Increment the pulse counter pulseCount++; }
This comment has been removed by the author.
ReplyDelete